Cluster Analysis



What is Cluster Analysis?

Cluster: a collection of data objects

— Similar to one another within the same cluster
— Dissimilar to the objects in other clusters
Cluster analysis

— Finding similarities between data according to the
characteristics found in the data and grouping similar
data objects into clusters

Unsupervised learning: no predefined classes

Typical applications

— As a stand-alone tool to get insight into data distribution
— As a preprocessing step for other algorithms



Clustering: Rich Applications
and Multidisciplinary Efforts

Pattern Recognition

Spatial Data Analysis

— Create thematic maps in GIS by clustering feature
spaces

— Detect spatial clusters or for other spatial mining tasks
Image Processing
Economic Science (especially market research)

WWW

— Document classification

— Cluster Weblog data to discover groups of similar
access patterns



Examples of Clustering
Applications

Marketing: Help marketers discover distinct groups in their customer

bases, and then use this knowledge to develop targeted marketing

programs

Land use: Identification of areas of similar land use in an earth

observation database

Insurance: ldentifying groups of motor insurance policy holders with a

high average claim cost

City-planning: Identifying groups of houses according to their house

type, value, and geographical location

Earth-quake studies: Observed earth quake epicenters should be

clustered along continent faults



Quality: What Is Good
Clustering?

* A good clustering method will produce high
guality clusters with

— high intra-class similarity

— low Inter-class similarity

* The quality of a clustering result depends on
both the similarity measure used by the method
and its implementation

« The guality of a clustering method is also
measured by its ability to discover some or all of



Measure the Quality of
Clustering

Dissimilarity/Similarity metric: Similarity Is
expressed in terms of a distance function,
typically metric: d(i, |)

There is a separate “quality” function that
measures the “goodness” of a cluster.

The definitions of distance functions are usually
very different for interval-scaled, boolean,
categorical, ordinal ratio, and vector variables.

Weights should be associated with different
variables based on applications and data
semantics.



Requirements of Clustering in Data
Mining
Scalability
Ability to deal with different types of attributes
Ability to handle dynamic data

Discovery of clusters with arbitrary shape

Minimal requirements for domain knowledge to determine input
parameters

Able to deal with noise and outliers
Insensitive to order of input records

High dimensionality

Incorporation of user-specified constraints
Interpretability and usability



Data Structures

« Data matrix
— (two modes)

* Dissimilarity matrix
— (one mode)

X11

Xi1

0
d(2,1)
d(3,1)

an

- X1f

Xif

Xnf

0
d(3,2) O

_d(r-1,1) d(r-1,2)




Type of data In clustering
analysis

Interval-scaled variables

Binary variables

Nominal, ordinal, and ratio variables

Variables of mixed types




Interval-valued variables

e Standardize data

- Caleuiateyfie mean Absplfte. Agyiafian:

m. =

e = 70X X e X )

where

— Calculate the standaxdized measurement (z-score)

. =
f
i Sf

* Using mean absolute deviation is more robust

than using standard deviation



Similarity and Dissimilarity
Between Objects

« Distances are normally used to measure the
similarity or dissimilarity between two data

objects q q q
d(l,]):c{/(|xil—xj1| #h =X [t =X [7)
e Some popular ones includeé: MinKow&ki

distance:

where 1= (X3, X, ..., Xjp) and | = (Xj;, X, ..., Xjp) are
two p-diwﬁéh@iﬁﬁgl‘dﬁdé |6i;j‘e>&f§ T a-ﬁﬁ(ig‘ié j@' positive
Integer
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Similarity and Dissimilarity
Between Objects (Cont.)

« If g =2, dis Euclidean distance:

s . 2 . 2 . 2
d(l,J)_\/(|xi1 X P, = P =X )

— Properties

* d(i,)) >0

« d(1,))=0

* d(i,)) = d(.1)

« d(i,)) <d(i,k) + d(k,))

* Also, one can use weighted distance,

parametric Pearson product moment
correlation, or other disimilarity measures



Binary Variables .. ;

1 0 sum
A contin 1) a boa+b
. gency table for opjecti . )
: C C+
binary data sum a+c b+d p
d@, )= b+cC
« Distance measure for @1 a+b+c+d
symmetric binary d, j) = b+cC
variables: a+b-+c

 Distance measure for sim ( )_
Jaccard J

asymmetric binary a+b+c

variables:



Dissimilarity between Binary

Variables
Fxyamnle
Name | Gender |Fever |Cough | Test-1 | Test-2 | Test-3 | Test-4
Jack |M Y N P N N N
Mary |F Y N P N P N
Jm |M Y P N N N N

— gender is a symmetric attribute
— the remaining attributes are asymmetric binary

— let thel yghuss ,me@ﬁ’%e?_%%é_}li and.td® value N be set to 0

1+1

1+1+1
14+2

14142

d(jack, jim) = = 0.67

d(jim,mary) = = 0.75




Nominal Variables

* A generalization of the binary variable in that it

can take more than 2 states, e.g., red, yellow,
blue, green

* Method 1: Simple matching
. - —m
— m: # of matche%,('p:Jpo’[_‘alp#pnf variables

« Method 2: use a large number of binary variables

— creating a new binary variable for each of the M



Ordinal Variables

 An ordinal variable can be discrete or continuous
* Order Is Important, e.g., rank

 Can be treated like interval-sc
deda.. M.}
— replace x; by their rank

— map the range of each variable onto [0, 1] by replacing

I-th object in the f-th variable by
— r. —1
if M —1

f

— compute the dissimilarity using methods for interval-
scaled variables



Ratio-Scaled Variables

« Ratio-scaled variable: a positive measurement on

a nonlinear scale, approximately at exponential
scale, such as AePt or AeBt

 Methods:

— treat them like interval-scaled variables—not a good
choice! (why?—the scale can be distorted)

— apply logarithmic transformation

yit = l0g(X;)
— treat them as continuous ordinal data treat their rank as
Interval-scaled



Variables of Mixed Types

« A database may contain all the six types of
variables

— symmetric binary, asymmetric binary, nominal,
ordinal, interval andia}Bo S(HJH

+ One may H4d-d Weightied fogwts to combine

their effects

— f Is binary or nominal:

d;® =0 if x;=x;, or d;¥ = 1 otherwise
— f |s Interval-based: use the normalized d|§tan_Lce
— f is ordinal or ratio-scaled %it =M 1

» compute ranks r; and




Vector Objects

Vector objects: keywords in documents,
gene features in micro-arrays, etc.

Broad applications: information retrieval,
biologic taxonor

L.t
_ s(X,V) = ——.
Cosine measure | XY

X* is a transposition of vector X, |X| is the Euclidean normal of vector X,

A variant: Tan «(x.v) = =



Major Clustering
Approaches (I)

* Partitioning approach:

— Construct various partitions and then evaluate them by some criterion, e.g.,
minimizing the sum of square errors

— Typical methods: k-means, k-medoids, CLARANS

 Hierarchical approach:

— Create a hierarchical decomposition of the set of data (or objects) using
some criterion

— Typical methods: Diana, Agnhes, BIRCH, ROCK, CAMELEON

 Density-based approach:

— Based on connectivity and density functions
— Typical methods: DBSACN, OPTICS, DenClue



Major Clustering
Approaches (l1)

Grid-based approach:

— based on a multiple-level granularity structure

— Typical methods: STING, WaveCluster, CLIQUE
Model-based:

— A model is hypothesized for each of the clusters and tries to find the best fit

of that model to each other
— Typical methods: EM, SOM, COBWEB

Frequent pattern-based:

— Based on the analysis of frequent patterns

— Typical methods: pCluster

User-guided or constraint-based:

— Clustering by considering user-specified or application-specific constraints

— Typical methods: COD (obstacles), constrained clustering



Typical Alternatives to Calculate the
Distance between Clusters

Single link: smallest distance between an element in
one cluster and an element in the other, i.e., dis(K;, K;) =
min(t;,, t,)

Complete link: largest distance between an element in

one cluster and an element in the other, i.e., dis(K;, K;) =
max(tiy, i)

Average: avg distance between an element in one
cluster and an element in the other, i.e., dis(K;, K =
a'Vg(tip’ 1:jq)

Centroid: distance between the centroids of two

8 & B2, \ " o o~ P~y



Centroid, Radius and Diameter of a
Cluster (for numerical data sets)

« Centroid: the "middle” of a clust%f . ZiNzl(tip)
M N

« Radius: square root of aver ' m any point
. 2 (. —c.)
of the cluster to its centroid 1=1"1p m
m=
N

. Qiameter: square root ([)):‘n av ﬂzqéihéﬁ,ﬁqgﬁared
distance between all pairs of pointsNrrthe cluster




Partitioning Algorithms: Basic
Concept

« Partitioning method: Construct a partition of a database D
of n objects into a set of k clusters, s.t., min sum of
sguared distance

X er(nzlztmieKm (Cm _tmi)z

« Given ak, find a partition of k clusters that optimizes the
chosen partitioning criterion
— Global optimal: exhaustively enumerate all partitions
— Heuristic methods: k-means and k-medoids algorithms

— k-means (MacQueen’67): Each cluster is represented by the center
of the cluster

— k-medoids or PAM (Partition around medoids) (Kaufman &
Rousseeuw’87): Each cluster is represented by one of the objects

:v'\ "-If\l\ t\ll [




The K-Means Clustering Method

* Given k, the k-means algorithm is
Implemented In four steps:
— Partition objects into k nonempty subsets

— Compute seed points as the centroids of the
clusters of the current partition (the centroid is the
center, i.e., mean point, of the cluster)

— Assign each object to the cluster with the nearest
seed point

— Go back to Step 2, stop when no more new
assignment



The K-Means Clustering Method

« Example
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Comments on the K-Means
Method

« Strength: Relatively efficient: O(tkn), where n is # objects, k
IS # clusters, and t Is # iterations. Normally, k, t << n.
« Comparing: PAM: O(k(n-k)?), CLARA: O(ks? + k(n-k))

« Comment: Often terminates at a local optimum. The global
optimum may be found using techniques such as:
deterministic annealing and genetic algorithms

« Weakness

— Applicable only when mean is defined, then what about categorical
data?

— Need to specify k, the number of clusters, in advance
— Unable to handle noisy data and outliers

— Not suitable to discover clusters with non-convex shapes



Variations of the K-Means Method

A few variants of the k-means which differ in
— Selection of the initial k means
— Dissimilarity calculations

— Strategies to calculate cluster means

« Handling categorical data: k-modes (Huang'98)

— Replacing means of clusters with modes
— Using new dissimilarity measures to deal with categorical objects

— Using a frequency-based method to update modes of clusters

— A mixture of categorical and numerical data: k-prototype method



What Is the Problem of the K-Means
Method?

* The k-means algorithm is sensitive to outliers !

— Since an object with an extremely large value may substantially

distort the distribution of the data.

« K-Medoids: Instead of taking the mean value of the object
In a cluster as a reference point, medoids can be used,

which is the most centrally located object in a cluster.

T
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The K-Medoids Clustering Method

Find representative objects, called medoids, in clusters

PAM (Partitioning Around Medoids, 1987)

— starts from an initial set of medoids and iteratively replaces one
of the medoids by one of the non-medoids if it improves the total

distance of the resulting clustering

— PAM works effectively for small data sets, but does not scale

well for large data sets

CLARA (Kaufmann & Rousseeuw, 1990)
CLARANS (Ng & Han, 1994): Randomized sampling

Focusing + spatial data structure (Ester et al., 1995)



A Typical K-Medoids Algorithm (PAM)
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PAM (Partitioning Around Medoids)
(1987)

« PAM (Kaufman and Rousseeuw, 1987), built in
Splus

« Use real object to represent the cluster

— Select k representative objects arbitrarily

— For each pair of non-selected object h and selected
object i, calculate the total swapping cost TC;;,

— For each pair of i and h,
« If TC;,, <O, 1 Is replaced by h

« Then assign each non-selected object to the most
similar representative object



PAM Clustering: Total swapping cost
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What Is the Problem with PAM?

 Pam is more robust than k-means in the
presence of noise and outliers because a
medoid is less influenced by outliers or other
extreme values than a mean

« Pam works efficiently for small data sets but
does not scale well for large data sets.

— O(k(n-k)?) for each iteration
where n Is # of data,k Is # of clusters

=» Sampling based method,



CLARA (Clustering Large
Applications) (1990)

CLARA (Kaufmann and Rousseeuw in 1990)

— Built in statistical analysis packages, such as S+

It draws multiple samples of the data set,
applies PAM on each sample, and gives the
best clustering as the output

Strength: deals with larger data sets than PAM

Weakness:

— Efficiency depends on the sample size

— A good clustering based on samples will not



CLARANS ("Randomized”
CLARA) (1994)

CLARANS (A Clustering Algorithm based on
Randomized Search) (Ng and Han'94)

CLARANS draws sample of neighbors
dynamically

The clustering process can be presented as
searching a graph where every node is a potential
solution, that is, a set of k medoids

If the local optimum is found, CLARANS starts
with new randomly selected node in search for a
new local optimum

[ Y of Y Y T I P T T T e Y. Y |



Hierarchical Clustering

« Use distance matrix as clustering criteria. This
method does not require the number of clusters

k as an input, but needs a termination condition
lStepO |St9p1 |Step2 |Step3 |Step4 agglomerative

- (AGNES)

| | | | | divisive
Step4 Step3 Step2 Stepl Step O (DIANA)




AGNES (Agglomerative
Nesting)

Introduced in Kaufmann and Rousseeuw (1990)

Implemented in statistical analysis packages, e.g.,

Splus

Use the Single-Link method and the dissimilarity

matrix.
Merge noc

es that have the least dissimilarity
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Dendrogram: Shows How the Clusters are Merged

Decompose data objects into a several Ievel£ of nested
partitioning (tree of clusters), calle :

A

A clustering of the data objects is abtained by cutting the
dendrogram at the desired Igvel, then eagh connected
component forms a cluster.

O O O O O O O l l




DIANA (Divisive Analysis)

Introduced in Kaufmann and Rousseeuw (1990)

Implemented in statistical analysis packages, e.g.,
Splus

Inverse order of AGNES

Fuantiialls egch node farms a cluster an ite nwn
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Recent Hierarchical Clustering
Methods

« Major weakness of agglomerative clustering
methods

— do not scale well: time complexity of at least O(n?),
where n is the number of total objects

— can never undo what was done previously

* Integration of hierarchical with distance-based
clustering

— BIRCH (1996): uses CF-tree and incrementally adjusts
the quality of sub-clusters

— ROCK (1999): clustering categorical data by neighbor
and link analysis




Clustering High-Dimensional
Data

» Clustering high-dimensional data
— Many applications: text documents, DNA micro-array data
— Major challenges:
« Many irrelevant dimensions may mask clusters
» Distance measure becomes meaningless—due to equi-distance

» Clusters may exist only in some subspaces
 Methods

— Feature transformation: only effective if most dimensions are relevant
 PCA & SVD useful only when features are highly correlated/redundant
— Feature selection: wrapper or filter approaches
 useful to find a subspace where the data have nice clusters
— Subspace-clustering: find clusters in all the possible subspaces

« CLIQUE, ProClus, and frequent pattern-based clustering



The Curse of Dimensionalit
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What Is Outlier Discovery?

« What are outliers?

— The set of objects are considerably dissimilar from the
remainder of the data

— Example: Sports: Michael Jordon, Wayne Gretzky, ...

* Problem: Define and find outliers in large data
sets

* Applications:
— Credit card fraud detection
— Telecom fraud detection
— Customer segmentation
— Medical analysis



ullicl viscuvcely.

Statistical
Approaches

Probability
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Data Values

xX*Assume a model underlying distribution that
generates data set (e.g. normal distribution)

« Use discordancy tests depending on
— data distribution
— distribution parameter (e.g., mean, variance)
— number of expected outliers

* Drawbacks

— most tests are for single attribute
— In many cases, data distribution may not be known



Outlier Discovery: Distance-Based
Approach

Introduced to counter the main limitations

Imposed by statistical methods

— We need multi-dimensional analysis without knowing
data distribution

« Distance-based outlier: A DB(p, D)-outlier is an
object O In a dataset T such that at least a
fraction p of the objects in T lies at a distance
greater than D from O

 Algorithms for mining distance-based outliers

— Index-based algorithm
— Nested-loop algorithm

hAII IAAAAAI AINA-A:-‘-IAIAA



UBIISILy-DdSEU
| ocal Outlier

Detection

Distance-based outlier
detection Is based on e
global distance distribution | g

It encounters difficulties to
identify outliers if data Is
not uniformly distributed

 Local outlier factor
(LOF)

— Assume outlier is not

Ex. C, contains 400 loosely crisp

distributed points, C, has — Each point has a LOF
100 tightly condensed

points, 2 outlier points o,,

0,

Distance-based method
cannot identify o, as an



